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Overview 

In 1994 the Oregon Department ofForestry altered its Water Classification & Protection 
Rules ( 0 D F 1994) to create the current suite of Oregon Forest Practices Act (FP A) 
riparian rules. In 1998 a MOU was signed between the Oregon Department of 
Environmental Quality (DEQ) and the Oregon Department of Forestry (ODF) that agreed 
to provide regulatory certainty for forest practices on non-federal land under the Clean 
Water Act so long as ODF monitoring verified that forest practices effectively protected 
water quality. ODF followed through on the agreement by enacting, in 2002, the Riparian 
Function and Stream Temperature project (RipStream). RipStream represented a highly 
controlled study of 33 sites in the Oregon Coast Range on state and privately-owned land. 
Data collection occurred generally for two years pre-harvest and five years post-harvest at 
all sites. Every site had a control reach upstream of the treatment reach. Data were 
collected repeatedly on stream temperatures, site vegetation, channel characteristics, and 
shade. Three peer-reviewed publications have come out of the study. Dent et al. (2008) 
provided an examination of site characteristics pre-harvest. The first post-harvest 
analysis, Groom et al. (2011a), asked whether the DEQ Protecting Cold Water criterion 
was met. It appeared that that PCW was not met on privately-owned forestland. The 
result warranted a closer examination of the data, resulting in a second post-harvest 
analysis (Groom et al. 2011 b). This second post-harvest analysis had three main findings: 
1) Streams on private lands appeared to be warmed by 0.7 °C while State forest streams 
did not change in temperature on average (0.0 °C); 2) Stream temperature changes were 
driven by changes in shade; 3) Changes in shade were largely related to changes in basal 
area. These results were presented to the Oregon Board of Forestry, the political body that 
oversees ODF and the administration ofthe FPA. The Board examined the findings and 
concluded that degradation of cold water had occurred on private lands. This finding 
triggered Section 527.714 of the Forest Practices Act, which initiates an examination of 
rule sufficiency and consideration of rule alteration. This paper presents the methods 
developed to produce recommendations to the Board of Forestry on alternative rule 
changes necessary to protect Cold Water. 

The prediction method described here is intended for developing harvest prescriptions to 
the Board of Forestry. Although the sites were not randomly selected (see Groom et al. 
2011 b), virtually all available and suitable sites were used. The purpose of this effort is to 
model the temperature and shade responses to harvest at all33 sites, and use the 
relationships found to predict temperature changes at those 33 sites given different harvest 
prescriptions. The overall temperature signal due to harvests across these sites will be 
interpreted as representative of harvests conducted across the geographical area of interest. 
The model is not intended for use beyond this effort; obtaining the necessary information, 
such as pre-harvest and upstream control temperature behavior, will generally not be 
possible in other settings. 
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Part 1: Predictive Shade & Temperature Model 

1.1 Introduction to the Predictive Shade & Temperature Model 

The Predictive Shade & Temperature Model (PSTM) development depended on the earlier 
modeling efforts, yet it differs from them in some critical ways. The Protecting Cold 
Water analysis (PCW analysis; Groom et al. 2011a) produced findings that spurred 
subsequent analyses, yet it used temperature metrics that the others did not. The effects 
and magnitude analysis (effects analysis; Groom et al. 2011 b) developed the shade and 
temperature models that were generally used by the PSTM described here. 

1.2 RipStream background 

1.2.1 Study overview 
RipStream was conducted at 33 sites in the Oregon Coast Range. Sites were situated 
along first- to third-order streams on privately owned (18 sites) and state forest (15 sites) 
lands dominated by Douglas fir (Pseudotsuga menzeisii) and red alder (Alnus rubra). 
Forest stands were 50-70 years old and were fire- or harvest-regenerated. Openings were 
dominated by shrubs such as vine maple (Acer circinatum), stink currant (Ribes 
bracteosum), salmonberry (Rubris spectabilis), and devil's club (Oplopanax horridus). 

Criteria to select sites included an ability to collect at least two years of pre-treatment and 
five years of post-treatment data at every site, the inclusion of sites harvested with 
Riparian Management Areas (RMAs) that meet current FP A and state forest standards, 
minimum treatment reach lengths of 1000 feet, and assurance that the upstream "control" 
reach would remain unharvested for the duration of the study. Streams needed to qualify 
under the FPA as "Small" or "Medium" (mean annual streamflow < 2 cfs or between 2 
and 10 cfs, respectively), and streams needed to be free of recent impacts from debris 
torrents and active beaver ponds. We obtained sites by requesting that industrial private 
and state forest managers in the Oregon Coast Range provide ODF with a list of stream 
reaches that met the criteria and would be harvested no sooner than 2004. An initial list of 
130 stream sites was reduced to 36 sites that met study design constraints. Three more 
were subsequently dropped due to changes in harvest plans. While there was an initial 
attempt to exclude sites with beaver activity, a beaver dam ponded 722ft of the 3,806 ft 
treatment reach for site 7801 during the first and second post-harvest years. 

Each site has a control reach immediately upstream of a treatment reach. The control 
reaches were continuously forested to a perpendicular slope distance of at least 200 feet 
from the average annual high water level. Reach lengths varied from 450 ft to 6000 ft 
with means of 905 ft and 2244 ft for the control and treatment reaches, respectively (Dent 
et al. 2008). 
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1.2.2 Treatments 
Forest Practices Act On Private Sites: Eighteen sites were established on private forest 
streams. Sites were harvested following contemporary FP A standards which require 
riparian buffers along fish-bearing streams to protect stream temperature, provide future 
large wood for streams, and retain other ecological services (Oregon Department of 
Forestry 2007). Measured as a slope distance, the RMAs are 50 and 70ft wide around 
small and medium fish-bearing streams, respectively. Both small and medium streams 
have a 20-ft no-cut zone immediately adjacent to the stream. Harvesting is allowed in the 
remaining RMA to a minimum basal area of 40 (small streams) and 120 (medium streams) 
ft2/1000 ft. See section 2.6 for more details. 

Oregon State Northwest Forest Management Plan (NWFMP) on State Sites: In Oregon, 
lands administered directly by Oregon Department ofF ores try (state forests) are managed 
under FMPs for multiple resource objectives (e.g., recreation, wildlife) in addition to 
timber production and require riparian protections that exceed FP A minimum values. 
Fifteen sites were established on state forest lands. All but two RipStream state forest sites 
had RMAs managed according to the Northwest Forest Management Plan; two sites were 
managed according to the Elliott Forest Management Plan which has identical riparian 
management strategies. We therefore refer to the management of all 15 state sites as 
NWFMP. Measured as a horizontal distance from the stream's edge, state RMAs are 170 
ft wide for all fish-bearing streams with a 25-ft no cut zone. Limited harvest is allowed 
between 25 ft and 100 ft of the stream only to create mature forest conditions. Further 
specifications are provided in section 2. 7. 

Control 
Reach 

Treatment 
Reach 

0 =Temperature Data Logger Station 

= 1.95 Acre Riparian Data Collection Plots 

=Treatment Reach Harvest Area 

Figure 1. RipStream site layout. Control and treatment reaches are defined by the 
position of Station 2 and 3 temperature data logger stations that coincide with harvest 
boundaries. Two riparian data collection plots are situated midway along both the control 
and treatment reaches. 
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1.2.3. Data Collection 
Optic Stowaway Temp and HOBO Water Temp Pro data loggers (Onset Computer 
Corporation, Bourne, Massachusetts) were annually deployed at four stations beginning in 
2002 or 2003 (Figure 1 ). In the PSTM analysis we consider only Stations 1-3, not 4. 1 W 
is at the upstream end of the control reach, 2W is located at the downstream end of the 
control reach and the upstream end of the treatment reach (i.e. shared logger) and 3W is at 
the downstream end of the treatment reach. Temperature loggers were deployed in shaded 
locations where stream flow was relatively constant, with reliable summer depth, and a 
well-mixed water column. Logger accuracy was checked prior to installation, in the field, 
and following retrieval with National Institute for Standards and Technology-calibrated 
digital thermometers according to the stream temperature protocol described by the 
Oregon Watershed Enhancement Board (1999). Although both types ofloggers we used 
are listed as ±0.2 oc accuracy, we found that for over 500 pre- and post- deployment 
assessments in only two instances did loggers register errors of>0.1 °C. Daily 
temperatures that exhibited increases in diel fluctuation and increases and decreases in 
daily maximum and minimum temperatures that were not reflected in other probes during 
the same year or at the same location during other years were interpreted as influenced by 
air temperature and excluded from the analysis. 

Stream channel data were collected at 200ft intervals within each reach. Data included 
wetted width, bankfull width, thalweg depth, and stream gradient collected according to 
the protocol described by Kauffmann and Robison (1998). Stream shade was quantified at 
these intervals using a self-leveling fisheye lens digital camera (Valverde and Silvertown, 
1997). Shade values were measured once pre-harvest and once post-harvest. Fish-eye 
photographs were taken in the middle of the stream, 1 m above the water level, and 
oriented due north. Shade values were calculated from the photographs using 
HemiView™ 2.1 software (Delta-T Devices, Cambridge, UK) as one minus the June 30 
Global Site Factor (1 -GSF). The GSF is the proportion ofboth direct and diffuse energy 
under a plant canopy relative to the available direct and diffuse energy for the given site's 
latitude/longitude. Shade and gradient values were averaged for each reach. 

Vegetation data were collected in four 500 by 170 ft plots on both sides of a study stream 
in the treatment and control reach (Figure 1 ). Plots were centered midway along each 
reach and contoured according to stream curvature. Vegetation plot data describe 
understory, overstory, downed wood, blowdown, and snag characteristics. The original 
purpose of including extensive vegetation plot data collection was to assess large wood 
recruitment, shade, and riparian structure following timber harvest. For this analysis we 
use a portion of the available riparian structure data (e.g., blow down, tree heights, basal 
area, species). Within each plot all living trees with a diameter at breast height (DBH) > 6 
inches were tallied by species; each tree's distance to the stream was additionally 
recorded. Height, live crown ratio, and crown class (e.g., dominant, co-dominant, 
intermediate, overtopped) were additionally measured for 20% of the trees. Figure 2 
depicts the plot layout that determined data collection. Tree data were recorded in 100 x 
170ft "lines". In the middle of each line was a transect, along which riparian downed 
wood was tallied. Each of the 1/1 oath acre subplots (circles) within each line were situated 
at 25 ft increments beginning at the stream's edge. Within each of a plot's 30 subplots, 
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contractors recorded landform, hillslope (measured towards the stream), shrub 
composition and percent cover, and seedling data. 

Data were collected in all four vegetation plots per site pre-harvest andre-measured in 
harvested treatment plot or plots (if one or both stream sides were harvested, respectively) 
post-harvest. Blowdown was quantified in all plots post-harvest. 

Figure 2. Data collection schematic for a single vegetation plot. Plots contoured stream 
channels. Within each plot are five 100 ft x 170 ft lines. Each line has a transect, and along 
each transect at 25 ft intervals are 1/1 oath acre sub-plots. 

The PCW, effects, and PSTM analyses are limited to all pre-harvest data and data from the 
first and second post-harvest years. Data collection included hourly stream temperatures 
(collected annually between July 1 and September 15) and both channel data (for a 
complete list see Dent et al., 2008) and riparian vegetation data (overstory and understory) 
during the first years pre-harvest and post-harvest. 

1.3 PCW analysis 

Our publication on the PCW analysis (Groom et al. 2011a) presents an unusually complex 
analysis. The complexity stems from our goal of answering a regulatory question using a 
statistically valid analysis approach constrained by the structure of the regulation. 
Specifically, we wanted to know if stream temperatures observed in Rip Stream sites 
indicated whether timber harvest was increasing stream temperatures by more than 0.3 °C. 

The Oregon Department of Environmental Quality water quality rules include several 
stream temperature criteria. Among them is the Protecting Cold Water (PCW) criterion 
that represents a federally-required antidegradation water quality rule component. The 
PCW applies to "cold" streams with temperatures below specific temperature thresholds 
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(DEQ, 2004). Anthropogenic activities such as timber harvest are not permitted to 
increase stream temperature by more than 0.3 °C above its ambient temperature. 

The criterion is fairly straightforward to assess at a point source, such as below the outlet 
of a pipe. Samples would be taken immediately above the outlet and below the mixing 
zone past the outlet. However, forest harvests affect stream temperatures as a non-point 
source process. The PCW temperature metric of interest is the 7DMM, or seven-day 
mean of daily maximum temperatures. This value is quantified as a moving mean across a 
season. That is, the first 7DMM represents day 1 through 7, while the next 7DMM will 
represent days 2 through 8. The Protecting Cold Water criterion indicates that if any 
7DMM is elevated by more than 0.3 °C above a baseline condition then the criterion is not 
met. 

We performed an analysis of the PCW (Groom et al. 2011 ), reducing our hourly data to 
daily summaries, and then to 7DMM temperatures. To determine if any single 7DMM is 
out of compliance required us to establish a reference condition and then ask if any 
7DMM during the test condition exceeded the expected amount by more than its 
prediction interval plus 0.3 C. For the detailed methods of the analysis, please see Groom 
et al. (20lla).We restricted the parameterization of the PCW analysis to adhere to rule 
language. The rules do not consider factors such as the length of the harvested reach, year 
effects, gradient, or other pertinent variables. Therefore our analysis similarly excluded 
these potential factors as well. In addition, the analysis examined every summer 7DMM 
datum relative to expected values. As a result, the analysis provided an answer to our 
analysis question (we saw an elevation of temperatures in private sites above the 0.3 °C 
threshold), but the analysis itself was convoluted enough that using it to obtain 
temperature change magnitudes would be meaningless or at best provide suspect results. 

The results of the PCW analysis were presented to the Oregon Board ofForestry several 
times between 2009 and 2011. At the January 2012 meeting the Board ofF ores try 
determined that the RipStream findings indicated forest practices contributed to the 
degradation of a natural resource, cold water. This finding triggered an FP A riparian rules 
analysis that potentially leads to a change in the riparian rules. This decision led 
ultimately to the development of the analysis approach presented here. However, the 
modeling effort and results of the PCW analysis are not incorporated in the PSTM due to 
factors discussed above. Instead, the PCW findings led to a second analysis, the effects 
analysis, which examined the magnitude of temperature increase at sites as well as 
important site variables that were related to observed temperature change. The effects 
analysis serves as the basis for the PSTM. 

1.4 Effects analysis 

In 2011 we published a second manuscript (Groom et al. 2011 b) that delved into site 
variables and how they related to observed temperature change. This "effects analysis" 
abandoned the constraints of the PCW analysis. The effects analysis examines the 
contributions of different variables at explaining observed temperature changes, including 
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treatment reach length, average treatment reach shade, elevation, average treatment reach 
gradient, east-west deviation in degrees of the treatment reach valley (a simplified version 
of valley azimuth), change in control reach temperature, and watershed area calculated at 
3W. We also included state and private ownership and the harvest status or whether a 
temperature measurement occurred during a pre-harvest or post-harvest year. 
Combinations of these variables were used in a suite of mixed linear regression models. 
We determined that mixed models were called for, as such models allow site intercept and 
the parameter value associated with the control reach temperature change to differ by site, 
accommodating random site-specific characteristics. Using the same mixed parameter in 
the models we compared the performance of 18 a priori temperature models (Groom et al. 
20llb Table 1). 

We examined model performance for four temperature change metrics. We summarized 
hourly stream temperature data to provide daily maximum, mean, minimum, and 
fluctuation (maximum-minimum) values for each station. We were interested in detecting 
changes in stream temperature due to site factors including harvest. We therefore defined 
the response variable as the daily difference between treatment reach 2W and 3W. To 
reduce analysis complexity we computed the average of this difference over a forty day 
period for each year (July 23 to August 15). This represents the time frame when we had 
the greatest number of functional loggers recording temperatures during a central portion 
of the summer months when maximum temperatures are observed in the Oregon Coast 
Range. We compared the 18 a priori temperature models against these four temperature 
metrics. 

The PCW analysis described in section 1.3 focused on maximum daily temperatures, 
averaged across seven day periods. Although the effects analysis examined a suite of 
temperature metrics, our current effort is focused on predicting effects of harvest on daily 
maximum temperatures as the DEQ temperature criteria focus on these quantities. 
Fortunately, the effects analysis' metric for maximum daily temperatures averaged over a 
40-day period (40-day max) is virtually identical to the mean of the 7DMM values taken 
for the same time period (Appendix 1 ). Therefore, we interpret the 40-day max values as 
a suitable substitute for an average response of7DMM values. 

The analysis focuses on an average response of the 7DMM instead of individual values 
out of a need for model simplicity. Streams temperatures differ in how they change 
temporally and spatially. Had we used 7DMM values we would have needed to include 
some modeling component of7DMM values to account for site- or even year-specific 
trends. The model would have also needed to incorporate autocorrelation and moving 
average corrections for these data. This level of complexity was avoided by using the 
average. A consequence, however, is that the 40-day max values do not capture the 
highest (or lowest) 7DMM values at sites. 

The 40-day max values for all years pre-harvest and the first two years post-harvest at all 
sites were best explained by variables for the change in control-reach temperature 
(Control), treatment reach length (TRLength), the mean of treatment reach shade 
measurements (Shade), and the first quartile of stream gradient measurements (Grad1 Q). 
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Control values were the 40-day max temperature change for a given year between the 1 W 
and 2W probes. The values were normalized by control reach length. TRLength was 
determined from field measurements of the distance between 2W and 3W. Shade was 
measured as described in section 1.2.3. Gradient values appeared generally skewed by 
high-gradient values, so we conducted the analysis on the first quartile (lower readings) of 
channel gradient, relating to slower stream flow rates. 

The formulation for the best-supported statistical model was: 
[1] b.T3_zijk = a 0 + aj + ({31b.TControl2 _ 1i + {3jb.TControl2 _1i) + {32 TRLengthj 

+ {33 Shadek + {34 Grad1Qj 

Subscripts indicate year data i, site j, and pre- or post-harvest status k. The model includes 
mixed-effects parameters for the linear model's intercept ( a1) and the slope value for 
Control temperatures (/J1). These values allow a different intercept and Control value for 
each site, assisting in accounting for the lack of independence between 40-day max 
observations at a single site. The modeling effort determined that providing the structure 
of a mixed model was advantageous over an intercept-only mixed model or a standard 
linear regression. 

Pre-harvest shade was constant enough between values of 80% and 95% that few variables 
could account for between-site differences. We therefore created linear models to 
describe only post-harvest shade. We constructed the models as weighted linear regression 
due to the different number of shade measurements taken per treatment reach. Some sites 
had five or six measurements, others had over twenty. Therefore the variability in the 
models should account for variability in the number of shade measurements. We 
performed a logit transformation of shade values to address to cope with the limited 
dependence variable (shade values cannot exceed 1.0) and as a means to linearize data that 
exhibited a curvature (see Section 1.6.2). Figure 3 illustrates the effects of such a 
transformation. 

In the shade model-selection procedure, we considered models that included valley 
azimuth. These models did not perform well; the effects of valley azimuth on shade 
should have already been taken into account by our hemispherical photographs. 
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Figure 3. A display of the effects of performing a logit transform of the shade variable 
(shade values in this study fall between 0.5 and 0.95). 

For logit-transformed shade data the best-supported statistical model was: 

[2] LogitShadePost 
= ashade + f3tshadeBasalAreaPost + f3zshadeTreeHeightPreharvest 
+ f33shadeBasalAreaPost * TreeHeightPreharvest 

The logit of shade post-harvest depended upon the basal area post-harvest at each site, tree 
height values measured pre-harvest, and their interaction. The explanatory variables were 
assessed within 100 ft of the stream, a distance that we anticipated would include most if 
not all of the tree foliage that contributed to shading the reach during the middle of the 
day, when solar radiation is at its maximum. Basal area was calculated as the mean basal 
area (m2/ha) of the two plots out to a horizontal distance of 100ft, counting all living trees 
with diameters at breast height of 6" or greater. Mean pre-harvest height within 100 ft was 
84 feet. 

Main findings for the temperature modeling procedure included finding that shade (which, 
according to [1], changed values pre-harvest to post-harvest) is a major contributor in the 
model towards explaining model variation, with less shade associated with greater 
temperature increases between 2W and 3W (Table 1 ). The fixed value for Control was 
negatively associated with changes in the treatment reach temperature. The greater the 
change in stream temperatures between 1 Wand 2W, the greater an opposite change would 
be seen in the treatment reach. That is, if there were substantial cooling in the control 
reach in a given year relative to other years, the model would predict that even in the 
absence of harvest there would be a relative increase in the temperatures for the treatment 
reach. The power of the fixed and mixed-effects aspects of Control at influencing model 
fit is demonstrated in Figure 4. In particular, note that the cross-hairs (predicted 
temperature values) often are close to or essentially on top of the circles (observed values) 
even when the values are fairly far apart. This is an indication of the degree by which the 
model adjusts for year-to-year variation in stream temperature behavior. 
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Table 1 (From Table 4, Groom et al. 2011 b). Fixed- and random-effect parameter values 
for a linear mixed-effects model and its associated temperature response variables. 
Parameters for treatment length and gradient are expressed as change in temperature per 1 
km of distance or elevation. Observations= 119, Groups (Sites)= 33. 

Fixeda DF Value SE p 
Intercept 0. 00 1 29.1 0.494 0.125 
Control 0.014 21.5 -1.232 0.459 
TRLength 0. 014 28.2 0.800 0.304 
Shade 0.000 94.5 -5.866 0.572 
Grad1Q 0.040 30.3 -0.076 0.036 

Random 
Intercept 
Control Temp 
Residual 

Std.Dev 
0.441 
3.564 
0.079 

"Control reach temperature change= CT, gradient= GR, shade= SH, treatment length= 
TL. 
bFor Diel Fluctuation the variable for GR is replaced by elevation (EL). Other parameters 
in the model are the same. 

Stream gradient (Grad1Q) and TRLength are associated with a change in temperature, 
with shallower gradients and longer treatment reaches associated with temperature 
increases over the course of the treatment reach. We interpret these findings to relate to 
the amount of time water within a stream is exposed to increased solar radiation in the 
harvest reach. Overall, when examining observed or partial residual temperature values 
for pre- and post-harvest periods, we found no temperature increase for State forest sites 
and~ 0.7 °C increase for all private sites. A similar amount of temperature increase was 
predicted for a temperature model that used an indicator variable for ownership instead of 
a shade variable. 
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Figure 4, from Figure 3 in Groom et al. (20llb). Observed and predicted temperature 
changes for maximum temperatures (°C) by site. Pre-harvest and post-harvest 
observations are represented by open and filled circles, respectively. Each point represents 
one year of data collection at a site. The crosses represent predicted values from model 
Grad_Shade. Above each site's data is listed its site number, ownership ([S]tate or 
[P]rivate ), post-harvest shade value, and in parentheses the change in shade value pre
harvest to post-harvest. Sites are ordered from the upper left to lower right by the observed 
change in shade values. Vertical differences of points within a pre-harvest or post-harvest 
category indicate a between-year change in the temperature relationship between 2W and 
3W. 

The shade model indicated that greater amounts of basal area post-harvest and shorter 
trees were related to greater amounts of shade. The model explained 0.69% (R2 = 0.69) of 
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the variation (n = 33, ashade = 1.795, fJIShade = 3.100e-2
, fJ2shade= 6.250e-2

, fJ3Shade = 4.680e-4
, 

model p < 0.001). Other similar models were also explored. 

1.5 Need for a more flexible approach- Bayesian modeling 

The PCW analysis indicated that temperature increases above threshold levels were 
occurring on privately-owned timberland, and the effects analysis provided two models 
that linked temperature change within a reach to shade ( eqn. 1 ), and shade values post
harvest to basal area and tree height ( eqn. 2). We saw an opportunity to use the models 
from the effects analysis to predict the amount ofbasal area necessary to maintain shade 
levels, which in tum would be expected to prevent harvest-related stream temperature 
mcreases. 

We needed a means to run the temperature and shade models backwards to reach 
predictions. That is, we wanted to provide basal area values for the shade model, obtain 
an expected shade amount, and then enter this shade amount into the temperature model to 
obtain a temperature change prediction. A major hurdle in performing such a procedure 
was that both of the shade and temperature model relationships contained error terms. We 
did not see a clear way to effectively join these models and rigorously account for error. 

We became aware of a modeling approach called Bayesian Hierarchical Modeling. The 
idea behind this variety of modeling is that different relationships that affect each other 
can be combined, with findings from one relationship informing the other. An example of 
this approach involves Antarctic fur seals (Arctocephalus gazella; Hiruki-Raring et al. 
2012). The authors determine factors associated with fur seal pup mass based on different 
relationships between prey densities, sea ice, maternal mass, and several other values. The 
relationships among these variables ultimately assist in estimating effects on pup mass. 
From our effects analysis, we have a temperature and shade model. The models do share a 
commonality: at least for post-harvest periods, shade appears as a dependant variable in 
the shade model and an independent variable in the temperature model. 

Bayesian modeling in general is different from the modeling approach (Frequentist) used 
in the PCW and effects analysis. A central difference is the philosophical and analytical 
approach taken towards data analysis. In a Frequentist analysis data are assumed to be 
random expressions of fixed parameters (Ellison 1996). That is, if the world were 
virtually static and we could exactly repeat the same experiment many times, the 
processes affecting the data would be fixed, but like a coin flip the data would be similar, 
but not identical, to previous realizations of the experiment. 

From a Bayesian perspective, it is the parameters that are treated as random and the data 
as fixed. The data resulted exactly the way they were because of myriad forces in the 
world. In the fixed-world example, if the experiment were run again the data would be 
identical. The various shifting effects in the world in tum make it so that our crude 
parameters of interest appear to follow random distributions. 
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There are some distinct advantages to using a Bayesian analysis. 
1) Models may be hierarchically combined. That is, since our shade and temperature 

model share information (the Shade variable), the models could be joined to 
estimate values simultaneously while accounting for error associated with 
parameter fit and nuisance parameters. 

2) Statistical models used in Frequentist analyses may be used for Bayesian analyses 
as well; it is the manner in which parameters are estimated that differ, not the 
structure of the parameters in the model. We therefore can make use of the shade 
and temperature models as formulated from the effects analysis. 

3) Missing data may be estimated. Bayesian analysis works backwards and forwards 
simultaneously. While the analysis estimates dependent parameter values it can 
use the parameter estimates to create an estimate for the missing value. 

4) Bayesian results more intuitive to understand than Frequentist results. Frequentist 
statistics speak to the probability of observed results given the repetition of data 
collection infinite times. A Frequentist 95% confidence interval tells us that the 
true value of interest (e.g., the true mean of a population) should fall within the 
estimated confidence interval 95% of the time if the study were repeated many 
times. A Bayesian 95% credibility interval (analogous to a confidence interval) 
around a mean indicates a 95% probability that the mean lies within the interval 
(Ellison 1996). 

5) Bayesian models depend on incorporating knowledge. A Bayesian model must be 
provided with parameter priors; i.e., information regarding the size of an effect, its 
variance, and the expected distribution. If the magnitude of the effect is set to zero 
the prior is uninformative; Frequentist and Bayesian analysis results for the same 
model will be very similar if uninformed priors are used. 

6) Obtaining derived estimates (e.g., predicted results given specified conditions) 
from a Bayesian analysis is relatively straightforward. 

Bayesian analyses have some shortcomings: 
1) Priors can influence model results if the priors are erroneous. This applies to the 

prior mean, variance, and distribution. If the variance is too restrictive or the 
distribution incorrect, the analysis may be prevented from correctly estimating 
values. 

2) Convergence must be achieved. Bayesian analysis has only recently (10-20 years) 
become generally feasible as computer algorithms (i.e., Markov Chain Monte 
Carlo techniques) are relied upon to determine the posterior distribution of 
estimates run for 103

- 106+ iterations. As the iterations run the parameter values 
improve (fit the data better). The results of the analysis are the various parameter 
point estimates taken from some number (e.g., 1000) of these iterations after the 
parameter values have stabilized. Each set of iterations for a parameter is called a 
chain. Modeling techniques allow us to assess the behavior of multiple chains. If 
one or more chains have not arrived at the same range of values then the model has 
not converged. We adjust the number of iterations to ensure that we include only 
values from chains that have reached convergence. At issue is that, particularly for 
complex models, the overall set of chains may have converged on a local value, 
not the "true" value. 
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3) If there are too many parameters in the model the model may overfit the data, or 
explain each datum well but have little ability to extrapolate well. Cross-validation 
techniques like leave-one-out can assist in assessing this condition. 

We wished to use the Bayesian model to create model predictions. Specifically, we 
wanted to simulate harvests of different prescription types on our plot data and determine 
how the changes in the plot structure would affect shade values (via the shade model) and 
in tum how those changes would affect the change in temperature between 2W and 3W. 
We knew we could employ our best-performing temperature model from the effects 
analysis. However, for the Bayesian analysis, we decided to revisit the shade model, as the 
previously described model had some characteristics we wished to improve on (discussed 
in 1.6.2). 

1.6 Developing sub-models 

The temperature and shade models from the effects analysis represent different varieties of 
linear regression models. The temperature model included mixed effects parameters while 
the shade model is a weighted regression. We created null-prior Bayesian versions of 
each model type to ensure that resulting estimates matched the Frequentist estimates. 
Once we had the Bayesian parameterization decided upon, we could proceed with 
combining the models (Section 1. 7). 

1.6.1 Temperature 

As a check of a correctly-functioning Bayesian model, we examined eqn 1 in R (library 
nlme, function lme, method= REML) as well as JAGS and WinBUGS. The R values 
differ slightly from Groom et al. (2011b), as the published values were run in SAS. The 
results of the probabilistic model are as follos: 

StdDev Corr 
(Intercept) 0.6683557 (Intr) 
c_ControlTemp 1.8203856 0.306 
Residual 0.2827235 

Fixed effects: Response ~ Control + TRLength + Shade + 
Grad1Q 

Value Std.Error DF t-value p-value 
(Intercept) 0.476914 0.1246656 84 3.825543 0.0003 
Control -1.241839 0.4373531 84 -2.839443 0.0057 
TRLength 0.828420 0.3006459 30 2.755467 0.0099 
Shade -5.923156 0.5647864 84 -10.487427 0.0000 
Grad1Q -0.083204 0.0423497 30 -1.964699 0.0588 
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Note that all independent variable values were centered for the analysis. The Bayesian 
results for the same model produced virtually identical findings for the fixed effects and 
similar estimates for the random effects (Table 2). 

Table 2. Bayesian estimates for the effects analysis temperature model using uninformed 
priors. Percentages are available for constructing credibility intervals (95% CI =between 
2.5% and 97.5%). 

mean sd 2.50% 25% 50% 75% 97.50% 

Random Effects 

intercept 0.71 0.11 0.52 0.63 0.7 0.77 0.96 

Control 1.94 0.46 1.16 1.62 1.9 2.22 2.94 

Residual 0.27 0.23 -0.2 0.12 0.28 0.45 0.68 

mean sd 2.50% 25% 50% 75% 97.50% 

Fixed Effects 

Intercept 0.48 0.13 0.21 0.39 0.48 0.57 0.75 

Control -1.24 0.48 -2.17 -1.55 -1.25 -0.93 -0.29 

TRLength 0.83 0.32 0.23 0.61 0.82 1.04 1.51 

Shade -5.91 0.59 -7.07 -6.29 -5.9 -5.51 -4.74 

Grad1Q -0.08 0.05 -0.17 -0.11 -0.08 -0.05 0.02 

The parameterization for the Bayesian model is provided in Appendix 2 (Section A2.1 ). 

1.6.2 Shade 

As mentioned in 1.5, we wished to re-visit the shade model. The effects analysis shade 
model was limited to examining post-harvest basal area out to 100 ft, not the full 170 ft 
measured. Therefore, our ideal shade model would: 

1) Explain results well 
2) Make intuitive sense 
3) Include all vegetation plot data out to 170ft horizontal distance from the stream 
4) Include a measure of distance between stream and harvest at each site 

The shade model from the effects analysis performed well and made sense (i.e., post
harvest shade was related to post-harvest basal area and tree height). However, it was 
limited to examining basal area only out to 100 ft horizontal distance. We originally 
limited it to 100 ft because the trees were on average 84 ft tall (less than 100 ft, greater 
than 75ft); since solar radiation is most powerful between 10:00 AM and 2:00PM in the 
summers, we anticipated that trees beyond this distance would not provide substantial 
shade to the stream. For this analysis we wished to more conclusively verify this 
assumption, and potentially include a measure ofharvest distance to enhance the model's 
performance and inform the development of alternate harvest scenarios. Therefore we 
sought an analysis that incorporated all vegetation plot data recorded out to 170 ft and 
included a measure of harvest distance from the stream. 
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Incorporating a measure of distance from the stream to the harvest in the analysis proved 
difficult. We required a measurement that reflected actual harvest boundary distances. 
The vegetation plot data provide information on the distance of each tree from the stream 
as well as the vegetation plot line it was found in. To validate this method, we compared 
it against visually-determined harvest distances based on cumulative plots ofbasal area as 
a function of distance. By superimposing pre- and post-harvest cumulative basal area plot 
we observed where the two lines appeared to diverge. Selecting this divergence point was 
a subjective exercise, so we placed our assessments for every treatment plot in 25 ft 
categories (e.g., harvest between 26 and 50 ft horizontal distance; Figure 5). Assessments 
were corroborated by examining the difference between pre- and post-harvest values at 5 
ft increments (not shown). 
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Figure 5. Cumulative basal area (ft2
) of four individual treatment reach vegetation plots, 

as a function of distance. Solid lines represent pre-harvest data, dashed lines are post-
harvest. Observed departure points between the two lines are between 76-100 ft. 

Once we had the visual assessments ofharvest distances we compared them to the mean 
of the distance to the outermost trees in each of a vegetation plot's five lines 
(MeanMaxDist). We examined the relationship between the two harvest distance 
assessments to verify that MeanMaxDist approximated the visually-determined harvest 
distance (Figure 6). We interpreted the R2 value of0.88 as indicative of an essentially 
good fit. Therefore, MeanMaxDist could serve as a measure of harvest distance for our 
analysis. 

We examined suites of models including basal area and MeanMaxDist. An interaction 
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model including MeanMaxDist performed well: 

[3] Shadepost 
a+ {31 BasalAreaPost170 + {32 MeanMaxDist 

+ {33 BasalAreaPost170 * MeanMaxDist 
+ {34 TreeHeightPreharvest170 

Diagnostic plots indicated that it generally conformed to linear model assumptions, and 
had an R2 of0.71. The fh estimate was not significant but the interaction term (/J4) was. 
Although this model seemed promising, individual variables involved did not appear to 
exhibit a linear fit with shade (Figure 7). 

Comparison of MeanMaxDist (empirical) & MeanDistBoth (visual) 
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Figure 6. Comparison of vegetation plot distance empirical measurement (MeanMaxDist) 
and a visual assessment ofharvest distance based on cumulative basal area by distance 
(MeanDistBoth). The line represents the linear fit of the two variables. Each point is the 
mean value of the two treatment vegetation plots at a site. 

Shade appears to have a non-linear relationship with basal area of plots out to 170ft and 
MeanMaxDist (Figure 7 A, B). The relationship appears tighter for basal area and shade. 
This non-linear relationship encouraged a deeper consideration of how we were modeling 
shade. In particular, Figure 7B appears to have two different slopes on two different 
intervals in the relationship between post-harvest basal area and shade, with slopes 
changing at~ 150 ft2

. Prior to that point the relationship is steep, afterwards less so. Our 
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original assumption that trees may influence stream shading out to a certain distance from 
a stream appeared supported. We therefore examined a different way to consider the 
MeanMaxDist data in the analysis. 

We suspected that harvests that were distant from the stream would have little impact on 
shade while those that were closer would have greater impact. At the same time, the 
closer the cut to the stream, the less basal area post-harvest. We therefore examined the 
relationship in Figure 7B by asking which of the basal area points corresponded to cut 
distances of</= 75ft, 100ft, and 125ft from the stream (Figure 8). We indicate which 
points fell below or above the "cutpoints" and fit a line to each set of points. The slope of 
the green line (above the MeanMaxDist cutpoints) becomes shallower from Figure 8A to 
Figure 8C. The slope of the orange line (below the cutpoints) is virtually identical for 
Figure 8A and B and then becomes shallower and fits the below-cutpoints worse in Figure 
8C. We interpret these figures to indicate that basal area information is most relevant for 
sites harvested within 100 ft of streams, but that the information quality is degraded if we 
look out to 125 ft. 
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Figure 7. Scatterplots of percent shade post-harvest and MeanMaxDist (A), basal are of 
plots out to 170 ft(B), and pre-harvest tree height (C). The relationship between 
MeanMaxDist and basal area are plotted in (D). 
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MeanMaxDist </= 100ft and 125ft respectively. The solid black line is fit to points 
above the MeanMaxDist cutpoint, while the dashed grey line is fit to those data below the 
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We found further evidence that basal area beyond 100 ft was not useful for explaining 
shade. A line fit to the< 100ft distance sites (Figure 8B) had a steep (and statistically 
significant) slope, indicating a relationship between shade and basal area post-harvest for 
sites with harvest distances< 100ft. In contrast, the slope of the shallower (green) line is 
not statistically different from zero. A separate analysis that compared a model that 
limited inclusion of post-harvest basal area to within 100 ft of a stream to a model that 
included basal area to 100ft and from 100ft to 170ft (two basal area measurements in the 
same model) indicated that the more simple model was preferable and that no information 
was gained by including trees from 100 to 170ft (L1AIC<2). We therefore interpreted 
these findings as justifying the inclusion of trees no further than 1 00 ft horizontal distance 
from the stream in the shade analysis. 

With this decision we focused on shade model selection. Previously, in the effects 
analysis, we examined a model with the logit of shade as the dependent variable. Was this 
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still supported? Comparing Figure 9 A and C to Band D (same independent variables, 
different dependent variables), it appears that there may be less of a curve evident in the 
data when shade is logit transformed and the independent variable is percent ofbasal area 
removed (Figure 9C). We therefore decided to use the logit of shade as the dependent 
variable. We used model selection to determine independent variables for inclusion. 
(Note: a quadratic term did not accommodate the curvature in 9B and 9D as well as the 
logit transformation.) 
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Figure 9. Plots comparing the fit of dependent variables shade (A, B) and the logit of 
shade (C, D) against independent variables"% difference in basal area, to 100ft" (A,C) 
and "post-harvest basal area to 100ft" (B,D). Lines represent weighted regression fits, R2 

values are provided. 

We additionally wished to re-visit the metric for post-harvest basal area. Although post
harvest basal area originally performed relatively well as a predictor, it conveyed no 
information of pre-harvest stand information. Sites were generally well-shaded pre
harvest (figure 1 0). Yet, they differed in pre-harvest basal area values. We reasoned that 
a set reduction in basal area may disproportionately affect stream shading at sites with 
lower pre-harvest basal area values. Therefore we created the variable "Percent Basal Area 
Reduced," which is, for all trees within 100' horizontal distance, the amount ofbasal area 
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pre-harvest minus the basal area post-harvest divided by the pre-harvest value. 
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Figure 10. Appears as Figure 4 in Groom et al. 2011b. Plot of average treatment reach 
shade values(%) for each site, grouped by harvest status (pre-harvest, post-harvest). On 
the left are state forest shade values, on the right shade are private forest shade values. 

For the independent variable model selection we investigated model fitting with 
combinations of the independent variables: post-harvest basal area to 100 feet, the percent 
basal area reduced, mean pre-harvest tree height of trees to 100 feet from the stream, and 
the percentage ofhardwood pre-harvest within 100 feet, assessed by basal area. Models 
are presented in Table 3. The top six models included the variable "percent basal area 
reduced" which outperformed the variable for post-harvest basal area (present in the 
following six models). The top three models received similar AIC values (maximum 
L1AIC = 2.53) and the probability that one of the three models were the best of the set was 
0.99. Given that the third-best performing model had an AIC value slightly greater than 
the variable penalty term for the top-ranked model (which had one extra variable) we 
essentially see the explanatory power of all three premodels as roughly equivalent. 
Because we seek a generally robust model (fewest parameters) we select model3 as the 
preferred model. 
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Table 3. Model selection for fitting logit of shade values. k is the number of estimable 
parameters in the model, LJAIC is the change in AIC between a model and the model with 
the lowest AIC value, and OJ is the model weight (probability ofbeing the best of the set). 
Models are sorted by LJAIC. All independent variables were assessed to a distance of 100 
ft from the stream. PctBA _red is the percent basal area reduced, PostBA is the post
harvest basal area, Ht is average tree height pre-harvest, and PctHWD is the percent of 
hardwood by basal area pre-harvest. 

Model Independent Variables k iJAIC / OJ 

1 PctBA red + PctHWD + PctBA red * PctHWD + Ht 5 0.00 0.81 0.56 
- -

2 PctBA red + Ht + PctBA red * Ht + PctHWD 5 1.46 0.80 0.27 
- -

3 PctBA red + Ht + PctHWD 4 2.53 0.78 0.16 

4 PctBA red + PctBA red2 3 10.37 0.70 0.00 
- -

5 PctBA red + Ht 3 11.17 0.70 0.00 

6 PctBA red 2 13.16 0.66 0.00 

7 PostBA + Ht 3 13.34 0.68 0.00 

8 PostBA + Ht + PctHWD 4 15.07 0.68 0.00 

9 PostBA + PctHWD + PctBA red * PctHWD + Ht 5 16.03 0.69 0.00 

10 PostBA + Ht + PctBA red * Ht + PctHWD 5 16.10 0.69 0.00 

11 PostBA + PostBA 2 3 18.04 0.63 0.00 

12 PostBA 2 27.41 0.47 0.00 

The equation for the selected model for site j, where all variables are considered out to a 
distance of 1 00 ft from the stream, is: 

[4] LogitShadePostj 

= a+ {31 PctBasalAreaReducedj + {32 PctHardwoodPrej 

+ {33TreeHeightPrej 

The observed vs. predicted fit for eqn 4 appeared essentially linear along the 1:1 line 
(Figure 11 ). Shade model diagnostics (Figure 12) indicate that residuals are fairly 
constant over modeled values, the data appear to be normally distributed, and that 
individual points are not exerting substantial leverage over the model. Points at the upper 
right of Figure 11 appear to be associated with greater standardized residuals relative to 
other points. 
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Figure 11. Weighted linear regression observed vs. predicted fit for the logit of shade 
(equation 4). The 1:1 line represents a perfect model fit; state forest sites are in red while 
privately-owned sites are in black. 

The Frequentist fit for the estimates of the weighted shade model (Table 4) closely 
matches the Bayesian fit (Table 5). The measures of error differ, which appears to be an 
effect of the inclusion of sample weights. The parameterization for the Bayesian shade 
model is provided in Appendix 2 (Section A2.2). 

Table 4. Output from R for modeling the logit of shade according to eqn. 4. The 
regression is weighted, with weights= 1/(variance in logit shade). 

Intercept 
PctDiffBA 
TreeHt 
PctHWD 

Estimate Std. Error t value Pr(>ltl) 
-0.02507 0.05111 -0.491 0.62742 
-2.30961 
-0.04406 
-0.74600 

0.23724 -9.735 1.21e-10 
0.01515 -2.909 0.00690 
0.21445 -3.479 0.00161 

Residual standard error: 0.5077 on 29 degrees of freedom 
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Table 5. Bayesian estimates for the shade model described in eqn. 4 using uninformed 
priors. Percentages are available for constructing credibility intervals (95% CI =between 
2.5% and 97.5%). 

mean sd 2.50% 25% 50% 75% 97.50% 

Intercept -0.02532 0.10027 -0.22416 -0.09287 -0.0254 0.044207 0.166609 

PctDiffBA -2.31089 0.468524 -3.22638 -2.62181 -2.31706 -1.99762 -1.38907 

TreeHt -0.04382 0.029668 -0.10029 -0.06417 -0.04407 -0.02384 0.014772 

PctHWD -0.73969 0.421963 -1.55758 -1.0295 -0.74402 -0.4573 0.108633 

lm(logitShade- PctDiffBAit100_c + TreeHt100m + Pre100PctHWD_c) 
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Figure 13. Diagnostics plots for the selected logit shade regression model ( eqn 4 ). 

1. 7 Combining the sub-models 

Linking the shade and temperature models was relatively straightforward. Our goal was 
to estimate post-harvest responses of shade and stream temperature to specified harvest 
prescriptions. Therefore, we did not need to alter the temperature model or its inputs for 
the pre-harvest period. Observed shade values were used as shade variable values pre
harvest. For the post-harvest period shade variable values were replaced with the 
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estimated post-harvest shade values (eqn. 4). This replacement was done to link the 
temperature sub-model and the post-harvest shade sub-model. The post-harvest shade 
sub-model itself was informed by post-harvest shade data. Both the observed and 
estimated logit shade values were transformed to percent shade (Appendix 2, Section 
A2.3). 

[5] 
b.Tij,k=l = a 0 + aj + ({31b.TControl2 _ 1ij + {3jb.TControl2 _ 1ij) + {32 TRLengthj 

+ {33 Shadej,k=l + {34 Grad1Qj 

b.Tijk=Z = a 0 + aj + ({31 b.TControl2 _ 1ij + {3jb.TControl2 _1ij) + {32 TRLengthj 
+ {33 ShadePost + {34 Grad1Qj 

LogitShadePostj 

= ashade + /31shadePctBasalAreaReducedj 
+ f3zshadePctHardwoodPrej + f33shadeTreeHeightPrej 

In Eqn. 5 b.T is the change in stream temperature between 2W and 3W (3W- 2W); i = 
year,}= site, and k =timing relative to harvest (pre- or post-harvest). For clarification, 
where k = 1, i= 1, 2, n years pre-harvest, where k = 2, i = 1, 2 years post-harvest. 

Eqn. 5 contains all of the non-nuisance parameters estimated by the combined Bayesian 
model. Of note, parameter values in the shade sub-model have a Shade suffix, and we 
perform a logistic transformation of logit shade values and estimates for use in the 
temperature estimation equations. The temperature change sub-model maintains the same 
parameters pre- and post-harvest (k = 1, 2); therefore, their parameter distributions are 
estimated using data from both the pre- and post-harvest periods. Shade sub-model 
estimates are informed by post-harvest shade data and the temperature sub-model 
estimates by observed changes in temperature. This involves estimations of model error 
terms and other nuisance parameters (Appendix 2, Section A2.3). We use these estimated 
parameter distributions for the prediction scenarios. 

Non-nuisance parameter estimates for [5] are presented in Table 6. Parameter estimates 
for the full model are similar but not identical to those presented in Tables 2 and 5. Of 
note, the credibility intervals for shade values have become narrower. For a more 
complete listing of parameter estimates, see Appendix 2, Section A2.4. 
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Table 6. Parameter estimates (abbreviated) for estimates of [5]. Sub-models are 
underlined. Sub-model means, standard deviations, and quantiles are presented. 

Sub-models & 
Parameters mean sd 2.50% 25% 50% 75% 97.50% 
Tem2erature 

Random Effects 
Control 1.921 0.440 1.186 1.599 1.887 2.199 2.861 
Intercept 0.730 0.111 0.538 0.654 0.720 0.794 0.981 
Residual 0.153 0.228 -0.297 -0.007 0.165 0.319 0.555 

Fixed Effects 
Intercept 0.396 0.133 0.104 0.310 0.400 0.484 0.645 
Control -1.092 0.460 -1.951 -1.399 -1.105 -0.807 -0.152 
TRLength 0.871 0.336 0.206 0.663 0.878 1.077 1.511 
Shade -5.606 0.844 -7.341 -6.153 -5.590 -5.030 -4.046 
GradlQ -0.077 0.049 -0.179 -0.109 -0.076 -0.044 0.014 

Shade 
Intercept -0.279 0.066 -0.407 -0.321 -0.279 -0.237 -0.148 
PctDiffBA -2.776 0.305 -3.428 -2.973 -2.770 -2.558 -2.223 
PctHwd -0.585 0.249 -1.092 -0.754 -0.583 -0.414 -0.100 
TreeHt -0.065 0.017 -0.100 -0.076 -0.066 -0.054 -0.031 

We are interested in predicting the effects of specific harvest scenarios on the changes in 
stream temperature for treatment reaches. We do so by controlling as many variables as 
possible. Our approach is to predict a change in stream temperature using a harvest 
scenario resulting in a specific per-site value for Percent Basal Area Reduced 
(PctBasalAreaReduced). 

[6] 11Ti=1,j,k=z 
a 0 + aj + ({31!1TControl2 _ 1ij + {Jjf1TControl2 _ 1ij) 

+ {32 TreatmentReachLengthj + {33 (inverse logit of: ashade 

+ f31shadePctBasalAreaReducedj + fJzshadePctHardwoodPrej 

+ f33shadeTreeHeightPrej) + {34 GradientQuartilej 

Equation [6] is populated with the estimated parameters from [5]. Importantly, change in 
temperature for equation [6] represents a derived value, not an estimated value. The 
Bayesian model obtains all estimated values from [5]. For every scenario, we obtain two 
predicted temperatures from [ 6]. The first is the predicted change in treatment reach 
temperature for the first year post-harvest with a harvest effect (simulated or observed). 
The harvest effect is represented by the variable PctBasalAreaReduced and is calculated 
from vegetation plot data (see Section 1.2.3). The second prediction sets the variable 
PctBasalAreaReduced equal to zero change between pre- and post-harvest basal area. We 
subtract the second prediction from the first, with the difference representing the predicted 
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increase in temperature, per site, due to harvest. This procedure effectively controls for 
site-specific influence of non-shade temperature variables. 

For a formulation of the model and incorporation of temperature prediction, see Appendix 
2, Section A2.3. 

1.8 Model evaluation 

There were several aspects of model evaluation that we investigated. We wanted to 
determine model fit (i.e., how well did it predict observed values) and determine how well 
the model met assumptions. These evaluations do not consider simulated results because 
there are no observed values or "truth" against which to directly check predictions. 

For model fit, we examined the first-year post-harvest estimated values as these were the 
values we wished to simulate. We plotted estimated vs. observed values (Figure 13). Of 
note, the estimated values represent the change in temperature between the probes 2W and 
3W, taking into account all variables in the model including Percent Difference in Basal 
Area. We interpret the plot as indicating a linear fit with some under-estimation of 
temperature change at the larger increases in temperature. 
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Figure 13. Observed vs. predicted changes in treatment reach temperatures between 
probes 2W and 3W. The diagonal line represents a one-to-one fit; the blue diamonds 
represent the change in temperature between 2 and 3 W for the first year post-harvest. 

We then examined model assumptions, some related to predicted values. 

ED466-000006660 

29 

EPA-6822_040146 



1.8.1 Assumption: Priors specification 
We performed two evaluations of priors. The first was to examine the distributions of 
priors and determine if any appeared to have distributions truncated by prior specification. 
All prior distributions appeared to function well except for the uniform distribution for the 
nuisance parameter idelS (Appendix 2, section A2.2). As a uniform distribution, it 
estimated a value precisely at the distribution's midpoint (50 if from 0 to 100). We 
increased the possible range of values to 0-1000, and found that it predicted a mean of 
500. Because this parameter was for the weighted shade regression model, we examined 
replacing the uniform distribution with a gamma distribution and checked model 
performance. We executed the shade analysis with the gamma distribution and null prior 
values for the mean and variance of 0. 0 1 and 0. 00 1. All four of these iterations produced 
very similar outcomes in other parameters (which in tum were approximately equivalent 
to the Frequentist shade model). We interpreted the original prior as functioning well. 

The model contains many priors with Gaussian distributions. They all have starting 
means ofO, but typically have precisions (reciprocal of variances) ofO.OOl. We increased 
the variance to 0.01 for all parameters and ran the model for 2 x106 iterations. Results 
were very similar between the two levels of precision. Most means of parameter 
distributions exhibited less than a 1% difference; the largest absolute difference was for 
the covariance parameter estimate ( 4% ). We interpreted these results to indicate that the 
priors were appropriately specified. 

1.8.2 Assumption: Parameter convergence is achieved 

Models were run with 6 chains (i.e., 6 parallel estimation procedures) for a number of 
iterations beyond which we saw any steps in trace plots for any of the parameters. We 
cannot know if parameters settled for all six chains reliably at the same range of values but 
would have settled at different values for longer and longer runs. We were careful to 
include sufficient iterations to reach an estimation consensus. 

1.8.3 Assumption: Model is not overfit 

An overfit model is one which lacks generalization; it describes the data at hand well but 
would fail to predict useful responses given new inputs. One method for assessing this 
condition is to conduct a leave-one-out cross-validation. The idea is to see how well the 
model predicts a data point if that point were not included in the analysis. We conducted 
this analysis to re-create first-year post-harvest estimates in a similar fashion to Figure 13. 
Individual first-year post-harvest values were omitted. The Bayesian model imputed the 
missing values using the within- and among-site estimates and relationships. 

An important consideration for the cross-validation approach is that we are conducting it 
for a mixed-effects analysis. When we leave out a data point, it affects the estimation of 
the random effects parameters for a particular site. This is especially true for sites where 
there may be a single value pre-harvest and post-harvest due to probe malfunctions. In 
these instances the mixed-effects parameter may resort to a global mean, altering the 
prediction greatly. 
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The leave-one-out cross-validation results are presented in Figure 14. The points are not 
as linear at higher temperature changes as in Figure 13. To an extent this should be 
expected, with less information available (particularly for random effects that are using at 
the most four or five data points to begin with). We have identified the data points from 
sites that were reduced to one point per site in the leave-one-out (LOO) procedure (red 
circles). The three biggest outliers are for an observed decline of 1.3 °C and observed 
increases of 2.1 °C. We interpret the LOO to indicate that the model sufficiently fits the 
data. Extreme outliers were generally those that had only one data point to use for random 
effects estimations, and if anything the model indicates an underprediction of temperature 
increase (conservative) relative to observed temperature increases. 
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Figure 14. Leave-one-out cross-validation of Bayesian model, first-year post-harvest data. 
Each point represents an estimated temperature response given the remainder of the 
temperature data set. Open triangles are state forest sites; closed diamonds are privately 
owned sites. Red circles surround data points that were estimated with only one data point 
informing random effects. 

1.9 Model - specific assumptions 

We performed assumption-checking procedures in Section 1.8 to verify the validity and 
performance of the model. Those procedures were standard for evaluating a predictive 
Bayesian model. However, there are some important assumptions for this specific model 
that affect interpretation and use of the model. 
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1.9.1 Inference and utility 

Our model appears to fit the data well (Figure 13). However, its data requirements make 
it unlikely to suitably apply to other data sets. The model utilizes pre-harvest and post
harvest data for a treatment and control reach (with the control reach directly upstream of 
the treatment reach). It also depends on shade data and riparian vegetation information. It 
requires these data to feed a specific mixed-effects temperature sub-model and the 
associated shade sub-model. Therefore, we do not foresee the model being used directly 
outside of these study sites. 

In addition, sites were not randomly selected. We used virtually all sites provided by 
industry and state forests that met our site inclusion criteria (including agreement to 
maintain an unharvested upstream control reach). Given our sample size (33 sites) and 
geographic extent of sites we interpret the results as representative for small and medium 
type-F streams in the Oregon Coast Range (three sites technically fell in the Interior 
georegion). Technically we lack the statistical inference a randomized study offers. On 
the other hand we are not aware of other randomized stream temperature studies that offer 
the same level of statistical power as this manipulative long-term study design. 

1.9.2 Pre-harvest shade levels 

Our model describes shade and temperature relationships for sites that all began with 
levels of shade that typically exceeded 80% (Figure 1 0; 4 sites had shade levels pre
harvest between 70 and 80% ). It therefore may not describe well the thermal behavior of 
streams at sites subject to harvest that exhibit lower pre-harvest shade levels. 

1.9.3 Harvest tree distributions 

As described in Section 1.6.2 we excluded consideration of trees (basal area) measured 
farther than 100 ft from the stream, horizontal distance. However, within 100 ft of the 
stream we relied on percent basal area reduced, not the mean of the maximum distance to 
the edge of the harvest. Twenty-two sites had values for the mean of the maximum 
distance to the edge ofharvest beyond 100ft, so the variable was relatively non
informative when compared to percent difference in basal area. 

Only one state forest site had substantial reduction in basal area within 100 ft of the 
stream; therefore, reductions in basal area predominantly reflected private ownership 
harvests. These harvests appeared as hard-edged clearcuts (i.e, not thinnings within the 
RMA). The variable for the percent difference in basal area within 100 ft of streams is 
therefore reflective of a hard-edged clearcut and not thinning. It is informed purely by 
changes in basal area within 100 ft from the stream; therefore, we assume in our 
simulations that harvest occurs from 100 ft from the stream and inwards which is 
reflective of our observations of site harvest patterns. 
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Part II: Harvest Simulation Approach 

2.1 Vegetation data use 

Vegetation plot data collection is described in Section 1.2.3. To summarize, we have 
100% tree cruise information from all plots pre-harvest, from treated plots post-1, and 
blowdown were tallied in all plots during the post-1 period. We summarized the 
vegetation data from each plot to obtain different metrics (MeanMaxDist, basal area pre
harvest and post-harvest) for use in the shade analysis and to develop the metric Percent 
Basal Area Reduced. 

To simulate a harvest we used pre-harvest plot data. These data were then subject to a 
specified harvest procedure (e.g., FPA harvest). We ran identical plot summary programs 
on the pre-harvest plot and the simulated harvest plot. One of the variables recorded for 
both scenarios (pre and post) was basal area within 100' horizontal distance of the stream. 
The horizontal distance is used in all cases as it is the metric the predictive analysis relies 
upon. 

Plot vegetation data are further summarized into site data. Site vegetation characteristics 
are the mean of the corresponding treatment plot metrics. Therefore, if a simulated FP A 
harvest removed more trees from one bank than the other, the resulting value for basal 
area would fall between the two plot basal area values. We performed this step as the 
model itself was constructed with the vegetation data summarized in this fashion. As 
mentioned in Section 1.4, the model does not incorporate valley azimuth. 

To obtain Percent Basal Area Reduced we subtract a site's post-harvest basal area (the 
mean ofbasal area values from the two treatment plots) from the site's pre-harvest basal 
area, divided by the pre-harvest basal area. This procedure was used to predict the effects 
ofharvest under all scenarios except the as-harvested scenario. In the as-harvested 
scenario we used both pre-harvest and the measured (not simulated) post-harvest data. 

Obtaining the measured post-harvest data for the as-harvested scenario required additional 
data manipulation. As mentioned above, only treated plots were fully re-measured post
harvest. If a site was harvested only on one side, we combined the treated plot with the 
pre-harvest data from the untreated plot. A further complication was blowdown. For 
estimating the effect on stream temperature, we removed plot blowdown from the basal 
area estimate. We omitted blowdown as it would likely reduce shade levels and we 
wished to predict as closely as possible the temperature increase due to the change in 
shade. 
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2.2 Predictions 

2.2.1 As-harvested 

As described in Section 1.7, we used the observed change in basal area between pre- and 
post-harvest to predict harvest-related changes in temperatures for individual sites (Figure 
15). The privately-owned sites had predicted overall temperature increases of0.93 °C 
while the state forest sites had predicted increases of -0.05 °C. 

Within this prediction some of the State sites exhibited predicted temperature decreases. 
This was due to greater basal area within 100 ft of streams recorded post-harvest 
compared to pre-harvest vegetation cruise surveys. We attribute the increase in basal area 
due to tree growth, ingrowth of smaller trees, and measurement error. 

2.2.2 State Forests 

We developed an approach to simulate a state forest FMP riparian harvest of our pre
harvest treatment reach data (Appendix 3). All treatment reach pre-harvest vegetation 
data were reduced according to our interpretation of the FMP, simulating harvest on both 
banks (Figure 16). Sites that achieved mature forest condition, either by being dominated 
by hardwoods or by having many large conifers, were not reduced in basal area by the 
simulation (temperature increase = zero). Other sites received harvest within 1 00 ft as 
limited by minimum basal area and conifer number retention requirements. All other 
possible trees were removed. The analysis predicts that the average temperature increase 
for all sites subjected to a thorough FMP harvest is 0.19 °C, with a 95% probability (one
sided) that the mean would be less than 0.23 °C. 
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Figure 15. Predicted temperature increase due to change in basal area for all sites, as harvested. 
Boxplots indicate median values (mid-lines) within grey boxes (25% and 75% quartiles), with 
whiskers extending from the 2.51

h- 97.51
h percentile. Circles represent data outside of the 

whiskers. Sites are listed along with ownership (S or P for State or Private) and stream 
classification (Sm = small, Med =medium). The horizontal line indicates zero temperature 
mcrease. 

2.2.3 FP A Harvest 

We programmed a similar two-sided harvest of all sites, irrespective of ownership, to 
experience a complete removal of as many trees as permitted by the FPA (Appendix 4). 
This harvest relied on tree slope distance from streams. We then determined the percent 
change in basal area between the pre-harvest plots and the simulated FP A harvests of 
those plots and entered the value into the simulation portion of the Bayesian model. The 
results indicate a mean temperature increase of l. 77 °C with only a 5% chance that the 
temperature increase on average would be below 1.43 °C (Figure 17). This result 
indicates that l) removal of all trees permitted under the FP A is predicted to result in 
significant warming, and 2) given the discrepancy between the as-harvested predicted 
warming and the simulated FPA harvest, a harvest as extreme as is portrayed in Figure 17 
may not be common practice on industrial land ownership. We initially asked landowners 
participating in the RipStream study to extract timber from riparian areas as permitted by 
the FP A and NWFMP. This was done to ensure that the rules, not practices, were tested. 
We were concerned that a "business as usual" harvest would not allow us to test the rules 
(according to ODF's 2002 compliance audit1 60% oflandowners did not enter the RMA 
and on average operators left over 200% of the required basal area). Even with landowner 

1 ODF 2002. Best Management Practices Compliance Monitoring Project: Final Report. Oregon 
department of forestry forest practices monitoring program technical report #15. 
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cooperation, it appears that harvestable basal area may have remained. 
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Figure 16. Simulation of response of all sites to a two-sided State Forest FMP harvest. The 
"whiskers" (lines above and below boxes) identify the 95% credibility interval for each site (95% 
probability that the mean response falls between those lines). The boxplot on the far left, labeled 
"All," represents the mean response of all33 sites, and its 95% credibility interval is represented 
by the two dashed lines. 

Riparian prescriptions in the FP A are to abide by rule language averaged over 1000 feet. 
Therefore, it is possible that the riparian plots, which are each 500' long, captured at some 
sites metrics not representative ofbuffer dimensions or characteristics. Ancillary work 
examining orthophoto imagery and LiD AR on suspected aberrant sites provided no 
indication that vegetation plots were unrepresentative. Figure 18 displays the total basal 
area from pre-harvest data, as-harvested data, and the FPA and NWFMP simulated 
harvests. It appears that state forest and privately-owned sites typically harvested less 
than they potentially could have. All but one state forest site harvested well above our 
simulated NWFMP level. Approximately six out of the 18 private sites appeared to 
harvest at or almost at the FP A level. Twelve of the 15 State Forest sites appeared to 
essentially receive little or no entry within 170' of the streams at the location of the 
vegetation plots. 

The RipStream vegetation plots were cruised by forestry professionals who were 
experienced at conducting state forest Stand Level Inventory cruises. Additionally, the 
Private Forests monitoring team performed quality checks of every site each time a 
vegetation plot cruise was completed. We therefore believe these data are credible. 
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Figure 17. Predicted temperature increases from simulated FPA harvest of all sites. The leftmost 
boxplot, "All," represents the mean response of all sites. The two dashed lines above l °C 
represent the 95% credibility interval for All, indicating the 95% probability that the mean 
response would be within that band. The other dashed line indicates 0.3 °C. 

2.2.4 Percent Harvest 

Prior to developing and testing prescriptions we wished to test the model's performance 
against a suite of conditions. Since the model relies on changes in the variable 
PctBasalAreaReduced we performed an examination of anticipated temperature increases 
with incremental changes in this variable. The predicted temperature increase changed as 
each site's basal area was reduced in 10% increments from 80% to 10% of pre-harvest 
values (Figure 19). Although the sites exhibit different temperature responses to basal 
area removal (Figure l9A) it appears that, when examining basal area removal within 100 
ft horizontal distance of the stream, the 0.3 °C threshold is generally crossed at around a 
15% removal ofbasal area (orange line in l9A, mean line in l9B). The mean lines 
indicate a 50% probability that the mean response will be below or above that line at the 
given level ofbasal area reduction. The credibility interval for the mean (Figure l9B) 
indicates that the probability of the mean response crossing 0.3 °C lies between a 12 and 
18% basal area reduction. 
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Figure 18. Square feet of basal area from 170 ft x 500 ft plots adjacent to streams. The pre-harvest and as
harvested results were measured in the field. The FMP and FP A harvests were simulated harvests of the pre
harvest data. All private sites are to the right of the orange line; state forest sites are on the left. Vertical 
lines indicated the difference between as-harvested and the potential harvest level at a site. 

2.2.5 Harvest by distance from stream 

The percent basal area reduction scenario demonstrated that a small fraction ofbasal area 
removed from within 100ft of the stream would cause temperature increases above 0.3 
°C. We examined how reduction in basal area as a function of distance from stream 
would affect temperature change. Due to differences in distance measure between state 
forests and private timberlands, the harvest was conducted according to horizontal 
distance (Figure 20) and slope distance (Figure 21 ). Slope distance is either equal to or 
greater than horizontal distance. Figure 21 includes slope distances out to 120ft as this 
captures all but 1.5% of trees within 100 ft horizontal distance of the stream. The other 
trees had slope distances > 120 ft at horizontal distances of 100 ft. 
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Figure 19. Temperature increases at a site level (A) and for an overall mean (B). The dashed 
horizontal line represents 0.3 °C. The orange line in A is equivalent to the line of the mean 
response in B. The blue and orange lines in B represent respectively the 75% and 95% Credibility 
Interval. The X axis for both graphs represents the percent basal area removed from each site. The 
Y axis is the temperature increase (0 C) due to the simulated harvests. 
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Figure 20. Predicted temperature increase at a site level (A) and overall mean (B) for harvest 
beyond specified horizontal distances. The orange line in A is equivalent to the line of the mean 
response in B. The blue and orange lines in B represent respectively the 75% and 95% Credibility 
Interval. The X axis for both graphs represents the no-cut distance that was not harvested for both 
banks of every site. The Y axis is the predicted temperature increase (0 C) due to the simulated 
harvests. 
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Figure 21. Predicted temperature increase at a site level (A) and overall mean (B) for harvest 
beyond specified slope distances. The orange line in A is equivalent to the line of the mean 
response in B. The blue and orange lines in B represent respectively the 75% and 95% Credibility 
Interval. The X axis for both graphs represents the no-cut distance that was not harvested for both 
banks of every site. The Y axis is the predicted temperature increase (0 C) due to the simulated 
harvests. 
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